
Linear Types for Large-Scale 
Systems Verification
JIALIN LI, University of Washington, USA 
ANDREA LATTUADA, ETH Zurich, Switzerland 
YI ZHOU, Carnegie Mellon University, USA 
JONATHAN CAMERON, Carnegie Mellon University, USA

JON HOWELL, VMware Research, USA 
BRYAN PARNO, Carnegie Mellon University, USA 
CHRIS HAWBLITZEL, Microsoft Research, USA 




2

Verifying large systems

◀VeriB𝜀trKV

31K lines of generated C++
44K lines code+proof in Dafny
on-disk crash-safe KV-store

[Hance OSDI’20]



2

Verifying large systems

◀VeriB𝜀trKV

31K lines of generated C++
44K lines code+proof in Dafny
on-disk crash-safe KV-store

performance focus
goal: scale verification techniques

[Hance OSDI’20]



2

Verifying large systems

◀VeriB𝜀trKV

31K lines of generated C++
44K lines code+proof in Dafny
on-disk crash-safe KV-store

performance focus
goal: scale verification techniques

success with Dafny, but

[Hance OSDI’20]



proof burden

verification time

diagnostics

3

Challenges in SMT memory reasoning

with dynamic frames (Dafny)

developer effort

developer iteration time



compound at scale

proof burden

verification time

diagnostics

3

Challenges in SMT memory reasoning

with dynamic frames (Dafny)

developer effort

developer iteration time



compound at scale
we measured them and set out to improve them

proof burden

verification time

diagnostics

3

Challenges in SMT memory reasoning

with dynamic frames (Dafny)

developer effort

developer iteration time



4

class Account {
  var balance: nat;
}

method Transfer(source: Account, dest: Account, amount: nat)
  requires source.balance >= amount

  ensures source.balance == old(source.balance) - amount
  ensures dest.balance == old(dest.balance) + amount
  modifies source, dest
{
  source.balance := source.balance - amount;
  dest.balance := dest.balance + amount;
}

method Main(acct: Account)
requires acct.balance >= 100
{
  Transfer(acct, acct, 100)
}



4

class Account {
  var balance: nat;
}

method Transfer(source: Account, dest: Account, amount: nat)
  requires source.balance >= amount

  ensures source.balance == old(source.balance) - amount
  ensures dest.balance == old(dest.balance) + amount
  modifies source, dest
{
  source.balance := source.balance - amount;
  dest.balance := dest.balance + amount;
}

method Main(acct: Account)
requires acct.balance >= 100
{
  Transfer(acct, acct, 100)
}

postcondition might not hold



5

class Account {
  var balance: nat;
}

method Transfer(source: Account, dest: Account, amount: nat)
  requires source.balance >= amount
  requires source != dest
  ensures source.balance == old(source.balance) - amount
  ensures dest.balance == old(dest.balance) + amount
  modifies source, dest
{
  source.balance := source.balance - amount;
  dest.balance := dest.balance + amount;
}

method Main(acct: Account)
requires acct.balance >= 100
{
  Transfer(acct, acct, 100)
}

postcondition might not hold



5

class Account {
  var balance: nat;
}

method Transfer(source: Account, dest: Account, amount: nat)
  requires source.balance >= amount
  requires source != dest
  ensures source.balance == old(source.balance) - amount
  ensures dest.balance == old(dest.balance) + amount
  modifies source, dest
{
  source.balance := source.balance - amount;
  dest.balance := dest.balance + amount;
}

method Main(acct: Account)
requires acct.balance >= 100
{
  Transfer(acct, acct, 100)
}

a precondition might not hold



6

class Account {
  var balance: nat;
}

method Transfer(source: Account, dest: Account, amount: nat)
  requires source.balance >= amount

  ensures source.balance == old(source.balance) - amount
  ensures dest.balance == old(dest.balance) + amount
  modifies source, dest
{
  source.balance := source.balance - amount;
  dest.balance := dest.balance + amount;
}

method Main(acct: Account)
requires acct.balance >= 100
{
  Transfer(acct, acct, 100)
}

postcondition might not hold

logic error or 
missing framing condition?



7

Dynamic frames address 
potential aliasing
general, but costly



7

Dynamic frames address 
potential aliasing
general, but costly

vague error messages



7

Dynamic frames address 
potential aliasing
general, but costly

framing invariants grow with system size
→ more proof text

vague error messages



7

Dynamic frames address 
potential aliasing
general, but costly

framing invariants grow with system size
→ more proof text

more difficult for the solver to discharge 
framing VCs
→ longer verification time

vague error messages



8

Dynamic frames address 
potential aliasing
general, but costly



8

Dynamic frames address 
potential aliasing

       aliasing isn’t the common case

general, but costly



8

Dynamic frames address 
potential aliasing

       aliasing isn’t the common case
demonstrated by Rust’s success

general, but costly



8

Dynamic frames address 
potential aliasing

hypothesis: we can lower development effort by 

making the non-aliasing code cheaper to reason about 


       aliasing isn’t the common case
demonstrated by Rust’s success

general, but costly



8

Dynamic frames address 
potential aliasing

hypothesis: we can lower development effort by 

making the non-aliasing code cheaper to reason about 


       aliasing isn’t the common case
demonstrated by Rust’s success

▶ Linear type system

general, but costly



9

Linear Dafny
linear type system for SMT-based verification



9

Linear Dafny

type system + SMT solver
extend expressivity of linear types leveraging the solver

linear type system for SMT-based verification



9

Linear Dafny

type system + SMT solver
extend expressivity of linear types leveraging the solver

linear type system for SMT-based verification

1. memory reasoning with linear types



9

Linear Dafny

type system + SMT solver
extend expressivity of linear types leveraging the solver

linear type system for SMT-based verification

1. memory reasoning with linear types
2. regions to address non-linear data



9

Linear Dafny

type system + SMT solver
extend expressivity of linear types leveraging the solver

linear type system for SMT-based verification

1. memory reasoning with linear types
2. regions to address non-linear data
3. quantitative and qualitative evaluation 

on a large system (VeriB𝜀trKV)



ordinary

ghost

10

Variable usages

duplicate
yes
yes

compiled
yes

dafny

linear store in linear dts



ordinary

ghost

10

Variable usages

duplicate
yes
yes

compiled
yes

dafny

linear store in linear dts

yes
yeslinear dafny

yes*shared

linear



11

linear datatype Account = Account(balance: nat)

method Transfer(linear source: Account, linear dest: Account, amount: nat)
returns (linear source': Account, linear dest': Account)
  requires source.balance >= amount
  ensures source'.balance == source.balance - amount
  ensures dest'.balance == dest.balance + amount
{
  source’ := source; 
  dest’ := dest;
  var new_source_balance := source’.balance - amount;
  var new_dest_balance := dest’.balance + amount;
  AccountSetBalance(inout source’, new_source_balance);
  AccountSetBalance(inout dest’, new_dest_balance);
}

linear usage

method AccountSetBalance(linear inout a: Account, balance: nat)
ensures a.balance == balance
{
  inout a.balance := balance;
}

in-place update



12

linear datatype Account = Account(balance: nat)

method Transfer(linear source: Account, linear dest: Account, amount: nat)
returns (linear source': Account, linear dest': Account)
  requires source.balance >= amount
  ensures source'.balance == source.balance - amount
  ensures dest'.balance == dest.balance + amount
{
  source’ := source; 
  dest’ := dest;
  var new_source_balance := source’.balance - amount;
  var new_dest_balance := dest’.balance + amount;
  AccountSetBalance(inout source’, new_source_balance);
  AccountSetBalance(inout dest’, new_dest_balance);
}

linear usage



13

linear datatype Account = Account(balance: nat)

method Transfer(linear source: Account, linear dest: Account, amount: nat)
returns (linear source': Account, linear dest': Account)
  requires source.balance >= amount
  ensures source'.balance == source.balance - amount
  ensures dest'.balance == dest.balance + amount
{
  source’ := source; 
  dest’ := dest;
  var new_source_balance := (
    
    source’.balance - amount;

  );
  var new_dest_balance := dest’.balance + amount;
  AccountSetBalance(inout source’, new_source_balance);
  AccountSetBalance(inout source’, new_dest_balance);
}

shared usage

borrow source’

end of borrow source’



14

Evaluation
proof burden

verification time

diagnostics

improvement in at scale

VeribetrKV — 24K lines code+proof
of imperative code
proven equivalent to high-level spec 
via state-machine refinement



15

VeribetrKV-DF
Dynamic frames

VeribetrKV-LT
Linear types

linear data inside 
non-linear data

Conversion To Linear Dafny

linear component
nonlinear component



Proof burden
lines of proof 
proof:code ratio

16

VeribetrKV-DF VeribetrKV-LT<>Dynamic frames Linear types

VeribetrKV-DF

pr
oo
f

co
de

VeribetrKV-LT

pr
oo
f

co
de



Verification time proxy for developer iteration time

17

VeribetrKV-DF VeribetrKV-LT<>Dynamic frames Linear types

Type checking (TC), and SMT solving



Verification time improvement

18

VeribetrKV-DF VeribetrKV-LT<>Dynamic frames Linear types

CDF

for functions ≥ 5sec

LT

DF



19

+ immutable+mutable borrowing

+ non-linear inside linear and viceversa

SMT-based (semi-automated) verification at scale

Linear Dafny

linear type system + SMT-based verification
→ lower developer effort
→ faster developer iteration time
evaluation likely underestimates potential benefits
incremental conversion enabled evaluation
→ improved diagnostics 📄


