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Verifying large systems

◀VeriB𝜀trKV

31K lines of generated C++
44K lines code+proof in Dafny
on-disk crash-safe KV-store

performance focus
goal: scale verification techniques

success with Dafny, but

[Hance OSDI’20]
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class Account {
  var balance: nat;
}

method Transfer(source: Account, dest: Account, amount: nat)
  requires source.balance >= amount

  ensures source.balance == old(source.balance) - amount
  ensures dest.balance == old(dest.balance) + amount
  modifies source, dest
{
  source.balance := source.balance - amount;
  dest.balance := dest.balance + amount;
}

method Main(acct: Account)
requires acct.balance >= 100
{
  Transfer(acct, acct, 100)
}
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class Account {
  var balance: nat;
}

method Transfer(source: Account, dest: Account, amount: nat)
  requires source.balance >= amount

  ensures source.balance == old(source.balance) - amount
  ensures dest.balance == old(dest.balance) + amount
  modifies source, dest
{
  source.balance := source.balance - amount;
  dest.balance := dest.balance + amount;
}

method Main(acct: Account)
requires acct.balance >= 100
{
  Transfer(acct, acct, 100)
}

postcondition might not hold

logic error or 
missing framing condition?
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Dynamic frames address 
potential aliasing
general, but costly

framing invariants grow with system size
→ more proof text

more difficult for the solver to discharge 
framing VCs
→ longer verification time

vague error messages
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Dynamic frames address 
potential aliasing

hypothesis: we can lower development effort by 

making the non-aliasing code cheaper to reason about 


       aliasing isn’t the common case
demonstrated by Rust’s success

▶ Linear type system

general, but costly
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Linear Dafny
linear type system for SMT-based verification
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Linear Dafny

type system + SMT solver
extend expressivity of linear types leveraging the solver

linear type system for SMT-based verification

1. memory reasoning with linear types
2. regions to address non-linear data
3. quantitative and qualitative evaluation 

on a large system (VeriB𝜀trKV)
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Variable usages

duplicate
yes
yes

compiled
yes

dafny

linear store in linear dts

yes
yeslinear dafny

yes*shared

linear
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linear datatype Account = Account(balance: nat)

method Transfer(linear source: Account, linear dest: Account, amount: nat)
returns (linear source': Account, linear dest': Account)
  requires source.balance >= amount
  ensures source'.balance == source.balance - amount
  ensures dest'.balance == dest.balance + amount
{
  source’ := source; 
  dest’ := dest;
  var new_source_balance := source’.balance - amount;
  var new_dest_balance := dest’.balance + amount;
  AccountSetBalance(inout source’, new_source_balance);
  AccountSetBalance(inout dest’, new_dest_balance);
}

linear usage

method AccountSetBalance(linear inout a: Account, balance: nat)
ensures a.balance == balance
{
  inout a.balance := balance;
}

in-place update
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linear datatype Account = Account(balance: nat)

method Transfer(linear source: Account, linear dest: Account, amount: nat)
returns (linear source': Account, linear dest': Account)
  requires source.balance >= amount
  ensures source'.balance == source.balance - amount
  ensures dest'.balance == dest.balance + amount
{
  source’ := source; 
  dest’ := dest;
  var new_source_balance := (
    
    source’.balance - amount;

  );
  var new_dest_balance := dest’.balance + amount;
  AccountSetBalance(inout source’, new_source_balance);
  AccountSetBalance(inout source’, new_dest_balance);
}

shared usage

borrow source’

end of borrow source’



14

Evaluation
proof burden

verification time

diagnostics

improvement in at scale

VeribetrKV — 24K lines code+proof
of imperative code
proven equivalent to high-level spec 
via state-machine refinement
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VeribetrKV-DF
Dynamic frames

VeribetrKV-LT
Linear types

linear data inside 
non-linear data

Conversion To Linear Dafny

linear component
nonlinear component



Proof burden
lines of proof 
proof:code ratio
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VeribetrKV-DF VeribetrKV-LT<>Dynamic frames Linear types

VeribetrKV-DF

pr
oo
f

co
de

VeribetrKV-LT

pr
oo
f

co
de



Verification time proxy for developer iteration time
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VeribetrKV-DF VeribetrKV-LT<>Dynamic frames Linear types

Type checking (TC), and SMT solving



Verification time improvement
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VeribetrKV-DF VeribetrKV-LT<>Dynamic frames Linear types

CDF

for functions ≥ 5sec

LT

DF
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+ immutable+mutable borrowing

+ non-linear inside linear and viceversa

SMT-based (semi-automated) verification at scale

Linear Dafny

linear type system + SMT-based verification
→ lower developer effort
→ faster developer iteration time
evaluation likely underestimates potential benefits
incremental conversion enabled evaluation
→ improved diagnostics 📄


